# Synthesis，Crystal Structure and Magnetic Properties of a New 3D Cobalt Vanadate 

WANG，Lei（王磊）ZHANG，Hong（张宏）ZHANG，Jing－Ping＊（张景萍）<br>NIU，Ben（牛年年）CUI，Shu－Xin（崔术新）<br>Faculty of Chemistry，Northeast Normal University，Changchun，Jilin 130024，China


#### Abstract

A new cobalt vanadate compound $1\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{~V}_{2}^{\mathrm{V}} \mathrm{O}_{6}\right]$ has been hydrothermally synthesized and characterized by the elemental analyses and the single crystal X－ray diffraction analysis．Compound $\mathbf{1}$ crystallizes in the ortho－ rhombic system，space group Pmna，with $a=0.55646, b=1.06900, c=1.18452 \mathrm{~nm}$ ，and $Z=4$ ．The magnetic sus－ ceptibility of the cobalt vanadate has been measured and indicates possible antiferromagnetic coupling between ad－ jacent cobalt（II）（ $0.5432-0.5697 \mathrm{~nm}$ ）through bond or space．


Keywords cobalt vanadate，hydrothermal synthesis，crystal structure，antiferromagnetic coupling

## Introduction

A lot of work has been focused in the last few years on the synthesis and magnetic properties of transition metal complexes．${ }^{1-6}$ Cobalt compounds are the most befitting magnetic materials because cobalt ion $\left(\mathrm{Co}^{2+}\right)$ has large coercive force resulting from large anisotropy energy．${ }^{7,8}$ It was found that vanadium compounds are helpful to enhance the temperature of magnetic order－ ing．${ }^{7,9,10}$ Therefore，plenty of cobalt vanadates have been synthesized，where organonitrogen ligands were used as template ${ }^{11-13}$ in general．However，only a few studies about magnetic properties of inorganic cobalt vanadates have been reported．${ }^{14}$ We herein report the synthesis， crystal structure and magnetic properties of a new cobalt vanadate $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{~V}_{2}^{\mathrm{V}} \mathrm{O}_{6}\right]$ ．

## Experimental

## Preparation of cobalt vanadate

All chemicals were purchased commercially and used without further purification．The title compound was synthesized by a hydrothermal reaction．A mixture of $\mathrm{CoCl}_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}(0.01 \mathrm{~mol}, 0.238 \mathrm{~g}), \mathrm{NH}_{4} \mathrm{VO}_{3}(0.01 \mathrm{~mol}$ ， $0.117 \mathrm{~g})$ ，and deionized water（ 10 mL ）was sealed in a Teflon－lined autoclave and heated at $150{ }^{\circ} \mathrm{C}$ for 4 d ． The crystal product was filtered and washed with dis－ tilled water，and dried at ambient temperature．The yield based on cobalt reached $86 \%$ ．Anal．calcd for $\mathrm{CoH}_{4} \mathrm{O}_{8} \mathrm{~V}_{2}$ ：Co 20．12，H 1．38，V 34．79；found Co 20．28， H 1．33，V 34.67 （H was analyzed on a Perkin－Elmer 2400 CHN Elemental Analyzer．V and Co were deter－ mined by a Leeman inductively coupled plasma（ICP） spectrometer）．The TG curve of $\mathbf{1}$ has only one step，
which is attributed to the removal of $\mathrm{H}_{2} \mathrm{O}$ coordinated to $\mathrm{Co}^{2+}$ ion and occurs in the range of $200-320{ }^{\circ} \mathrm{C}$ ．The observed weight loss $(13.2 \%)$ is in agreement with the calculated value（12．3\％）（Perkin－Elmer TGA7 thermo－ gravimetric analyzer）．

## Crystallographic data collection

The structure of compound $\mathbf{1}$ was determined by single crystal X－ray diffraction analysis．A brown single crystal of 1 with dimensions $0.487 \mathrm{~mm} \times 0.398 \mathrm{~mm} \times$ 0.318 mm was mounted on a glass fiber．Data were col－ lected on a Rigaku R－AXIS RAPID IP diffractometer with Mo $\mathrm{K} \alpha(\lambda=0.071073 \mathrm{~nm})$ at 293 K in the range of $2.57^{\circ}<\theta<27.45^{\circ}$ ．Empirical absorption correction（ $\psi$ scan）was applied．The structure was solved by the di－ rect method and refined by the Full－matrix least squares on $F^{2}$ using the SHELXTL－97 software．${ }^{15}$ All of the non－hydrogen atoms were refined anisotropically．The hydrogen atoms were located in its calculated position． A total of 1495 （ 848 unique，$R_{\text {int }}=0.0160$ ）reflections were measured．Structure solution and refinement based on 1495 independent reflections with $I>2 \sigma(I)$ and 55 parameters gave $R_{1}\left(w R_{2}\right)=0.0235$（0．0741）$\left\{R_{1}=\right.$ $\sum\left|\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right| / \sum\left|F_{\mathrm{o}}\right| ; \quad w R_{2}=\sum\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] /$ $\left.\sum\left[w\left(F_{0}^{2}\right)^{2}\right]^{1 / 2}\right\}$ ．A summary of crystal data and struc－ ture refinement for compound $\mathbf{1}$ is provided in Table 1. The atomic coordinates and equivalent isotropic displacement parameters for $\mathbf{1}$ are given in Table 2．The bond lengths and angles are listed in Table 3．Crystal data and structure refinement，atomic coordinates，bond lengths and angles，and anisotropic displacement pa－ rameters were available in supplementary crystallo－ graphic data．

[^0]Table 1 Crystal data and structure refinement for compound 1

| Empirical formula | $\mathrm{H}_{4} \mathrm{CoO}_{8} \mathrm{~V}_{2}$ |
| :--- | :--- |
| Formula weight | 292.84 |
| Temperature | $293(2) \mathrm{K}$ |
| Wavelength | 0.071073 nm |
| Crystal system | Orthorhombic |
| Space group | $P n m a$ |
|  | $a=0.55646(11) \mathrm{nm} \quad \alpha=90^{\circ}$ |
| Unit cell dimensions | $b=1.0690(2) \mathrm{nm} \quad \beta=90^{\circ}$ |
|  | $c=1.1845(2) \mathrm{nm} \quad \gamma=90^{\circ}$ |
| Volume | $0.7046(2) \mathrm{nm}^{3}$ |
| $Z$ | 4 |
| $D_{\mathrm{c}}$ | $2.761 \mathrm{~g} / \mathrm{cm}^{3}$ |
| Absorption coefficient | $4.923 \mathrm{~mm}{ }^{-1}$ |
| $F(000)$ | 564 |
| Crystal size | $0.487 \mathrm{~mm} \times 0.398 \mathrm{~mm} \times 0.318$ |
| $\theta$ range for data collection | $2.57{ }^{\circ}$ to $27.45^{\circ}$ |
|  | $-7 \leqslant h \leqslant 7,-13 \leqslant k \leqslant 13$, |
| Limiting indices | $-15 \leqslant l \leqslant 15$ |
| Reflections collected | 1495 |
| Independent reflections | $848[R($ int $)=0.0160]$ |
| Completeness to $\theta=27.48^{\circ}$ | $100.0 \%$ |
| Absorption correction | $E m p i r i c a l$ |
| Max. and min. transmission | 0.209 and 0.110 |
| Refinement method | Full-matrix least-squares on $F^{2}$ |
| Data/restraints/parameters | $848 / 0 / 55$ |
| Goodness-of-fit on $F^{2}$ | 0.995 |
| Final $R$ indices $[I>2 \sigma(I)]$ | $R_{1}=0.0235, w R_{2}=0.0741$ |
| $R$ indices (all data | $R_{1}=0.0270, w R_{2}=0.0762$ |
| Largest diff. peak and hole | $663 \mathrm{and}-716 \mathrm{e} \bullet \mathrm{nm}{ }^{-3}$ |
|  |  |
|  |  |

Table 2 Atomic coordinates and equivalent isotropic displacement parameters $\left(\mathrm{nm}^{2} \times 10^{2}\right)$ for compound $\mathbf{1}$

| Atom | $x$ | $y$ | $z$ | $U_{\mathrm{eq}}{ }^{a}$ |
| :--- | ---: | :--- | ---: | ---: |
| $\mathrm{~V}(1)$ | $0.1953(1)$ | $0.4689(1)$ | $0.1740(1)$ | $0.008(1)$ |
| $\mathrm{Co}(1)$ | $-0.0160(1)$ | 0.2500 | $-0.0401(1)$ | $0.009(1)$ |
| $\mathrm{O}(3)$ | $0.1214(3)$ | $0.3863(2)$ | $0.0636(2)$ | $0.020(1)$ |
| $\mathrm{O}(2)$ | $0.1675(3)$ | $0.6194(2)$ | $0.1454(2)$ | $0.018(1)$ |
| $\mathrm{O}(1)$ | $0.0001(3)$ | $0.4289(2)$ | $0.2897(2)$ | $0.017(1)$ |
| $\mathrm{O}(\mathrm{W} 2)$ | $-0.3408(5)$ | 0.2500 | $0.0529(2)$ | $0.018(1)$ |
| $\mathrm{O}(\mathrm{W} 1)$ | $0.3025(5)$ | 0.2500 | $-0.1306(3)$ | $0.026(1)$ |

[^1]Table 3 Bond lengths (nm) and angles ( ${ }^{\circ}$ ) for compound 1

| $\mathrm{V}(1)-\mathrm{O}(3)$ | 0.16308(18) |
| :---: | :---: |
| $\mathrm{V}(1)-\mathrm{O}(2)$ | 0.16511(19) |
| $\mathrm{Co}(1)-\mathrm{O}(3)$ | 0.20531(18) |
| $\mathrm{Co}(1)-\mathrm{O}(3) \# 2$ | 0.20531(18) |
| $\mathrm{Co}(1)-\mathrm{O}(2) \# 3$ | 0.20530(18) |
| $\mathrm{O}(2)-\mathrm{Co}(1) \# 4$ | 0.20530(18) |
| $\mathrm{V}(1)-\mathrm{O}(1)$ | 0.18003(17) |
| $\mathrm{V}(1)-\mathrm{O}(1) \# 1$ | 0.18020(16) |
| $\mathrm{Co}(1)-\mathrm{O}(2) \# 4$ | 0.20530(18) |
| $\mathrm{Co}(1)-\mathrm{O}(\mathrm{W} 1)$ | 0.2071(3) |
| $\mathrm{Co}(1)-\mathrm{O}(\mathrm{W} 2)$ | 0.2117(3) |
| $\mathrm{O}(1)-\mathrm{V}(1) \# 5$ | 0.18020(16) |
| $\mathrm{O}(3)-\mathrm{V}(1)-\mathrm{O}(2)$ | 109.89(10) |
| $\mathrm{O}(3)-\mathrm{V}(1)-\mathrm{O}(1)$ | 109.25(9) |
| $\mathrm{O}(2)-\mathrm{V}(1)-\mathrm{O}(1)$ | 109.34(9) |
| $\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{O}(3) \# 2$ | 90.39(11) |
| $\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{O}(2) \# 3$ | 177.19(7) |
| $\mathrm{O}(3) \# 2-\mathrm{Co}(1)-\mathrm{O}(2) \# 3$ | 91.94(8) |
| $\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{O}(2) \# 4$ | 91.94(8) |
| $\mathrm{O}(3) \# 2-\mathrm{Co}(1)-\mathrm{O}(2) \# 4$ | 177.19(7) |
| $\mathrm{O}(2) \# 3-\mathrm{Co}(1)-\mathrm{O}(2) \# 4$ | 85.69(10) |
| $\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{O}(\mathrm{W} 1)$ | 89.48(8) |
| $\mathrm{O}(3) \# 2-\mathrm{Co}(1)-\mathrm{O}(\mathrm{W} 1)$ | 89.48(8) |
| $\mathrm{V}(1)-\mathrm{O}(3)-\mathrm{Co}(1)$ | 163.33(12) |
| $\mathrm{O}(3)-\mathrm{V}(1)-\mathrm{O}(1) \# 1$ | 107.48(9) |
| $\mathrm{O}(2)-\mathrm{V}(1)-\mathrm{O}(1) \# 1$ | 111.63(9) |
| $\mathrm{O}(1)-\mathrm{V}(1)-\mathrm{O}(1) \# 1$ | 109.22(5) |
| $\mathrm{O}(2) \# 3-\mathrm{Co}(1)-\mathrm{O}(\mathrm{W} 1)$ | 92.12(8) |
| $\mathrm{O}(2) \# 4-\mathrm{Co}(1)-\mathrm{O}(\mathrm{W} 1)$ | 92.12(8) |
| $\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{O}(\mathrm{W} 2)$ | 90.38(7) |
| $\mathrm{O}(3) \# 2-\mathrm{Co}(1)-\mathrm{O}(\mathrm{W} 2)$ | 90.38(7) |
| $\mathrm{O}(2) \# 3-\mathrm{Co}(1)-\mathrm{O}(\mathrm{W} 2)$ | 88.03(7) |
| $\mathrm{O}(2) \# 4-\mathrm{Co}(1)-\mathrm{O}(\mathrm{W} 2)$ | 88.03(7) |
| $\mathrm{O}(\mathrm{W} 1)-\mathrm{Co}(1)-\mathrm{O}(\mathrm{W} 2)$ | 179.80(11) |
| $\mathrm{V}(1)-\mathrm{O}(2)-\mathrm{Co}(1) \# 4$ | 145.62(11) |
| $\mathrm{V}(1)-\mathrm{O}(1)-\mathrm{V}(1) \# 5$ | 133.90(10) |

Symmetry transformations used to generate equivalent atoms: \#1 $x+1 / 2, y,-z+1 / 2 ; \# 2 x,-y+1 / 2, z ; \# 3-x, y-1 / 2,-z ; \# 4$ $-x,-y+1,-z ; \# 5 x-1 / 2, y,-z+1 / 2$.

## Magnetic measurement

Magnetic susceptibility data of compound 1 were measured by using an Oxford MagLab2000 magnetometer in the temperature range of $2-300 \mathrm{~K}$ with an applied field of 1 T .

## Results and discussion

## Description of crystal structure

The single crystal X-ray diffraction analysis reveals that compound 1 exhibits a three-dimensional (3D) framework, formed by $\left\{\mathrm{VO}_{4}\right\}$ tetrahedra and $\left\{\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{O}_{4}\right\}$ octahedra via the corner-sharing mode. The asymmetric unit of compound 1 (Figure 1) shows the coordination environment around the vanadium and cobalt atoms. There are one crystallographically independent V atom and one crystallographically independent Co atom in this structure. The $\mathrm{V}(1)$ center shows a distorted tetrahedral coordination geometry with four bridging oxygen atoms, two of which are linked with two $\operatorname{Co}(1)$ atoms and another two linked with two $\mathrm{V}(1)$ atoms. The $\mathrm{V}-\mathrm{O}$ bond lengths are in the range of $0.16308(18)-0.18020(16) \mathrm{nm}$ and the $\mathrm{O}-\mathrm{V}-\mathrm{O}$ angles $107.48(9)^{\circ}-111.63(9)^{\circ}$. The Co center adopts an octahedral geometry being coordinated by two oxygen atoms of two water molecules, and four bridging oxygen atoms which are linked with four $\mathrm{V}(1)$ atoms. The Co-O bond lengths vary from $0.20530(18) \mathrm{nm}$ to $0.2117(3) \mathrm{nm}$. The $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ angles are in the range of $85.69(10)^{\circ}-179.80(11)^{\circ}$.


Figure 1 ORTEP drawing of compound 1 with thermal ellipsoids at $50 \%$ probability.


Figure 2 The $\mathrm{CoO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ layer of compound 1 viewed approximately parallel to $a$-axis.

As shown in Figure 2, two $\left\{\mathrm{VO}_{4}\right\}$ tetrahedra share a corner to give rise to a $\mathrm{V}_{2} \mathrm{O}_{7}$ moiety, which is linked with four adjacent $\left\{\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{O}_{4}\right\}$ octahedra through corner-sharing to form a two-dimensional (2D) network (Figure 2). The 2D layer consists of 4- and 6-membered rings. All two-dimensional (2D) networks are parallel to each other and adjacent 2D networks are connected together by $\mathrm{V}(1)-\mathrm{O}(1)-\mathrm{V}(1)$ bond to produce 3 D framework (Figure 3). The 3D framework contains hexagonal channels ( $c a .0 .5437 \mathrm{~nm} \times 0.4680 \mathrm{~nm}$ ) parallel to $a$-axis (Figure 4). The two distances between two cobalt ions which are linked by Co-O-V-O-Co and Co-O-V-O-V-O-Co are 0.5432 nm and 0.5697 nm , respectively.


Figure 3 Perspective view parallel to $b$-axis of compound 1.


Figure 4 Perspective view parallel to $a$-axis of compound 1 .

## Magnetic properties

The temperature dependence of the magnetic susceptibility for compound $\mathbf{1}$ is shown in Figure 5, in the form of $\chi_{\mathrm{m}}{ }^{-1}$ vs. $T$ and $\chi_{\mathrm{m}} T$ vs. $T$ plots. The $\chi_{\mathrm{m}} T$ value of compound 1 exhibits a continuous decrease upon cooling from $4.10(297.5 \mathrm{~K})$ to $2.03 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}(2.2 \mathrm{~K})$. The decline of $\chi_{\mathrm{m}} T$ with the lowered temperature indicates that there is possible antiferromagnetic coupling between the cobalt ions at low temperature. ${ }^{1,16}$ Both Co-O-V-O-Co ( 0.5432 nm ) and Co-O-V-O-V-O-Co $(0.5697 \mathrm{~nm})$ may contribute to the antiferromagnetic coupling through bond or space. Comparing with the cyanide or oxalate ${ }^{17,18}$, there are no proper pathways to
propagate magnetic interactions for compound $\mathbf{1}$, so no long-range magnetic ordering was observed in Figure 5 down to 2 K .


Figure 5 Temperature dependence of $\chi_{\mathrm{m}}{ }^{-1}$ and $\chi_{\mathrm{m}} T$ for compound 1.

In summary, a new 3D cobalt vanadate has been successfully synthesized, the magnetic measurement indicates possible antiferromagnetic coupling between the cobalt ions.

## References

1 Sun, B.-S.; Gao, S.; Ma, B.-Q.; Wang, Z.-M. New J. Chem. 2000, 24, 953.
2 Xie, Y.-S.; Jiang, H.; Xu, X.-L.; Liu, Q.-L.; Du, C.-X.; Zhu, Y. Chin. J. Chem. 2002, 20, 292.

3 Kou, H.-Z.; Gao, S.; Ma, B.-Q.; Liao, D.-Z. Chem. Commun. 2000, 1309.
4 Berlinguette, C. P.; Vaughn, D.; Canada-Vilata, C.; Galan-Mascaros, J. R.; Dunbar, K. R. Angew. Chem. 2003,

115, 1561.
5 Rittenberg, D. K.; Sugiura, K.; Sakata, Y.; Mikami, S.; Epstein, A. J.; Miller, J. S. Adv. Mater. 2000, 12, 126.
6 Sun, B.-W.; Gao, S.; Ma, B.-Q.; Niu, D.-Z.; Wang, Z.-M. J. Chem . Soc., Dalton Trans. 2000, 4187.
7 Pokhodnya, K. I.; Burtman, V.; Epstein, A.; Miller, J. S. Adv. Mater. 2003, 15, 1211.
8 Gambardella, P.; Dallmeyer, A.; Maiti, M.; Makagoli, M. C.; Eberhardt, W.; Kern, K.; Carbone, C. Nature 2003, 416, 301.

9 Entley, W. E.; Girolami, G. S. Science 1995, 268, 397.
10 Hatlevik, Ф.; Buschmann, W. E.; Zhang, J.; Manson, J. L.; Miller, J. S. Adv. Mater. 1999, 11, 914.
11 Pan, C.-L.; Xu, J.-Q.; Wang, K.-X.; Cui, X.-B.; Ye, L.; Lu, Z.-L.; Chu, D.-Q.; Wang, T.-G. Inorg. Chem. Commun. 2003, 6, 370.
12 La Duca Jr., R. L.; Ratkoski, R.; Rarig Jr., R. S.; Zubieta, J. Inorg. Chem. Commun. 2001, 4, 621.
13 Wang, X.-Q.; Liu, L.-M.; Jacobson, A. J.; Ross, K. J. Mater. Chem. 1999, 9, 859.
14 Belaiche, M.; Bakhache, M.; Drillon, M.; Derrory, A.; Vilminot, S. Physica B 2001, 305, 270.
15 (a) Sheldrick, G. M. SHELXS 97, Program for Crystal Structure Solution, University of Göttingen, Germany, 1997.
(b) Sheldrick, G. M. SHELXL 97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.

16 Li, Y.-T.; Zhu, X.-D.; Yan, C.-W. ; Liao, D.-Z. Chin. J. Chem. 2001, 19, 476.
17 Yeung, W.-F.; Man, W.-L.; Wong, W.-T.; Lau, T.-C.; Gao, S. Angew. Chem. 2001, 113, 3121.

18 Coronado, E.; Galan-Mascaros, J. R.; Gomez-Garcia, C. J.; Martinez-Agudo, J. M. Adv. Mater. 1999, 11, 558.


[^0]:    ＊E－mail：zhangjp162＠nenu．edu．cn
    Received October 28，2003；revised March 2，2004；accepted March 22， 2004.
    Project supported by the National Natural Science Foundation of China（No．20274006）．

[^1]:    ${ }^{a} U_{\text {eq }}$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

